108 MMP Algebra 2 \& Thigonomeray Unit 2A: Quadmatic Functions and Equations 1st Quarter 2016-2017

IBMYP Statement of Inquiry: Many real-life patterns have a parabolic form, which can be represented and explored using a quadratic model.

DATE	TOPIC	TEXT REFERENCE	IXL Extra Practice	ASSIGNMENT

Unit 2 Overview

Students will identify and sketch graphs of parent functions and find domains and ranges of functions including linear, piecewise, greatest integer and absolute value functions. Students will then be able to graph these functions using transformations. Students will also graph linear, square, and absolute value inequalities.

The BIG Ideas for Unit 2 are . . .

- Function models of real life relationships enable predictions to be made.
- The parameters of a function relate to the transformation of the graph
- The solutions of a quadratic equation are the zeros/roots of its related function.

Unit 2 Virginia Standards of Learning

All/T. 4 The students will solve, algebraically and graphically,
a. Absolute value equations and inequalities

Graphing calculators will be used for solving and for confirming algebraic solutions.
All/T. 6 The students will recognize the general shape of function families (absolute value, square root, cube root, rational, polynomial, exponential, and logarithmic) and will convert between graphic and symbolic forms of functions. A transformational approach to graphing will be employed.
AII/T. 7 The students will investigate and analyze functions algebraically and graphically. Key concepts include
a. Domain and range, including limited and discontinuous domains and ranges.

Unit 2 Essential Questions

Be sure to answer these questions as we progress through the unit. Some or all of them will be used as essay questions on your unit assessment. :)

- How do the parameters of a function determine the shape of its graph?
- What are examples of real life situations that can be modeled by a quadratic function?
- What are the zeros of a quadratic function?
- How do we determine which method to solve quadratic equations is most efficient?
- Why is it important to learn a variety of methods for solving quadratic equations?

Unit 2A Learning Targets		Summative Assessment Score (points)	Summative Assessment \%
Learning I can state the domain and range of any relation or function using set builder Target Set A notation and interval notation.			
Learning Target Set B I can graph a quadratic function, and state all of its parts (vertex, roots/zeros, intercepts, axis of symmetry, domain and range) in any form (standard, vertex, intercept) with and without a graphing calculator.			
Learning I can answer the essential questions and related questions regarding the unit, and apply knowledge of quadratics in real-life contexts (using a graphing Target Set \mathbf{C} calculator).			
Learning I can factor a quadratic expression and solve a quadratic equation over the set Target Set D of real numbers by factoring.			

